ВЛИЯНИЕ ПРОТОЧНОЙ МОРСКОЙ ВОДЫ НА ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТИТАНОВОГО СПЛАВА

Г. Г. Савенков^{1, 2}, М. С. Смаковский¹, Е. В. Коптяев¹, Е. А. Итин³, А. М. Брагов⁴

¹Машиностроительный завод «Армалит», Санкт-Петербург, Россия

²Санкт-Петербургский государственный технологический институт, Санкт-Петербург, Россия ³ЦКБ МТ «Рубин», Санкт-Петербург, Россия

⁴Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского, Нижний Новгород, Россия

Исследовался титановый сплав 3M, активно применяющийся в морском машиностроении для изготовления элементов судовой и корабельной арматуры. Стандартные механические характеристики (по ГОСТ 1497) исследуемого сплава были следующие: $\sigma_{0,2} = 660 \pm 10$ МПа, $\sigma_B = 715 \pm 10$ МПа, $\delta_5 = 22 \pm 1\%$, $\psi = 36 \pm 1\%$.

Образцы из исследуемого сплава были выдержаны в резервуарах с проточной водой (имитирующей морскую) в течении 90 и 135 дней. Схема проведения коррозионных испытаний представлена на рис. 1. Скорость циркуляции воды составляла 6 м/с. Температура воды -25° С. Контейнер объемом 30 дм 3 был заполнен морской водой с содержанием соли 33 промилле.

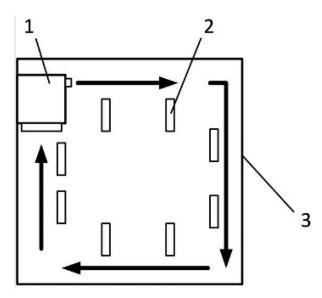


Рис. 1. Схема проведения испытаний:

I – насос Jebao AP – 300, 2 – испытуемые образцы, 3 – корпус контейнера (стрелками указано направление потока воды)

После каждой выдержки (90 или 135 дней) образцы были испытаны по методу Кольского с применением методики разрезного стержня Гопкинсона на установке РСГ-20 [1]. Результаты испытаний образцов в исходном состоянии (выдержка 0 дней) приведены в таблице 1, после выдержки в проточной морской воде – в таблице 2.

Таблица 1 Результаты динамических испытаний сплава 3M в исходном состоянии

Скорость деформации	Предел текучести σ_{Sd} , МПа	Предел прочности $\sigma_{bd}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Предельное удлинение δ_d , %	Относительное сужение ψ_d , %
900	865 ± 15	925 ± 25	$20 \pm 2,5$	$36 \pm 1,0$
1200	875 ± 25	950 ± 10	$21,5 \pm 0,5$	$37,5\pm0,5$
1750	910 ± 10	980 ± 20	$22,5 \pm 0,5$	$38 \pm 1,0$

Скорость деформации $\dot{\epsilon}, \ c^{-1}$	Предел текучести σ_{Sd} , МПа	Предел прочности $\sigma_{bd}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Предельное удлинение δ_d , %	Относительное сужение ψ_d , %
900	830 ± 10	870 ± 5	$18,5 \pm 1,5$	$36 \pm 1,0$
	850 ± 5	900 ± 5	$17,5 \pm 1,5$	31 ± 0.5
1300	850 ± 15	900 ± 10	21 ± 1,0	$34,5 \pm 1,5$
	880 ± 20	920 ± 5	$20 \pm 2,0$	30 ± 3.0
1800	860 ± 10	890 ± 10	$20,5 \pm 1,5$	$30 \pm 2,0$
	900 ± 10	940 ± 15	$19,5 \pm 1,0$	$2\overline{5,5} \pm 3,5$

Примечание: в числителе – результаты после выдержки 90 дней, в знаменателе – после 135.

Анализ результатов, представленных в таблице 1, и их сопоставление с результатами, представленными в таблице 2, показал, что:

- 1. После коррозионных испытаний, в целом, происходит охрупчивание испытанного сплава.
- 2. Степень охрупчивания растет со скоростью деформации.
- 3. После коррозионных испытаний разброс значений существенно выше, чем при испытаниях образцов в исходном состоянии.

Работа частично выполнена при финансовой поддержке Государственного задания Минобрнауки России (проект № FSWR-2023-0036).

Литература

1. **Брагов, А. М.** Высокоскоростная деформация материалов различной физической природы [Текст] / А. М. Брагов, Л. А. Игумнов, А. Ю. Константинов, А. К. Ломунов. – Нижний Новгород : Изд-во ННГУ им. Н. И. Лобачевского, 2020 г.